slide-seq-pipeline
Release 0.1

Hirak

May 30, 2022

CONTENTS

1 Contents
1.1 Pipeline o o e e e e e e e
1.1.1 Pre-requisite softwares e e e e
1.2 Pipeline through notebooks
1.2.1 Preprocess output dir€Ctory ot i e e e e e e e e e e e
1.2.2 Importthe needed packages e

1.3

1.2.3 Step 4a: Extract the barcodes (42bp) from the bamfiles
1.2.4 Step 4b: Create whitelist (Ideally one should borrow information from image analysis)

Recovery algorithm details L e
1.3.1 Bead Matrix o e e e e
1.3.2 Current Algorithm

slide-seg-pipeline, Release 0.1

slide-seq-pipeline This pipeline replicates most of the stuff provided in official slide-seq except the dependence to the
google sheet and assumed internal file/folder location. We lack some of the generalization as these scripts are meant

to run on a local machine. I would highly recommend installing the actual package since some of the functions are
directly used in this repo.

Check out the usage section for further information, including how to installation the project.

Note: This project is under active development.

CONTENTS 1

https://github.com/MacoskoLab/slideseq-tools

slide-seq-pipeline, Release 0.1

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Pipeline

1.1.1 Pre-requisite softwares

To run the pipeline successfully one needs to install/download several third-party tools.
Tools

* Picard tools

* Dropseq tools

¢ STAR

Before going into the installation procedure. We should go over the actual input format. The input folder contains the
raw sequencing reads.

The operation starts from the BASECALLS_DIR, that contains the actual intensities and the bcl files. For example the
basic structure of such file will be

slide-seq-pipeline git:(main) 1ls /home/hsarkar/code/slide-seq-data/P25255/220329_A00689_
—0513_BHYK23DRXY/

Config InterOp Recipe RunInfo.xml o
—SequenceComplete.txt

CopyComplete.txt Logs RTA3.cfg runParameters.xml Thumbnail_
—Images

Data P25255_SampleSheet.txt RTAComplete.txt RunParameters.xml

The bcl files are present in Data/Intensities/BaseCalls/. The RunInfo.xml used to be the file that has the
information that is to be parsed before writing down the information.

Use the existing package so that we can import existing structures from the slideseq-tools.

Install existing slideseq-tools package

>git clone https://github.com/MacoskolLab/slideseq-tools.git

Create a spread-sheet that contains some of the following fields that we need to feel. An example spread-sheet is
provided in spreadsheet folder of the repo.

Index(['library', 'date', 'flowcell', 'run_name', 'bclpath', 'lane',
'sample_barcode', 'bead_structure', 'reference', 'run_barcodematching',
'locus_function_list', 'start_sequence', 'base_quality',
'min_transcripts_per_cell', 'email', 'puckcaller_path', 'bead_type',

(continues on next page)

https://broadinstitute.github.io/picard/
https://github.com/broadinstitute/Drop-seq/tree/v2.5.1
https://github.com/alexdobin/STAR
https://github.com/MacoskoLab/slideseq-tools

[1]:

[14]:

slide-seq-pipeline, Release 0.1

(continued from previous page)

'gen_readl_plot', 'gen_downsampling'],
dtype="object"')

Desctiption

library: Name of the library (Each puck will have a specic name) puckcaller_path: A location containing the files
from the image analysis pipeline, BeasBarcodes.txt and BeadLocations. txt run_name: Depends on how many
different runs we are having BCLPath: Actual location to the BCL files sample_barcod: It’s a 8bp barcode that can be
obtained from RunInfo.xml file with the column name index (I am not sure about this yet) reference: The actual refer-
ence file I used GRCh38. fasta bead_structure: Determines the actual length of the cell barcode and the corresponding
UMI

Cosntruction

The construction of the dataframe with the help of the RunInfo.xml is depicted in the next embedded notebook.

1.2 Pipeline through notebooks

1.2.1 Preprocess output directory

import sys
print(sys.version)

3.7.10 (default, Feb 26 2021, 18:47:35)
[GCC 7.3.0]

1.2.2 Import the needed packages

from xml.etree import ElementTree as et
from dataclasses import dataclass

from pathlib import Path

from openpyxl import load_workbook
import pandas as pd

import sys

import os

import csv

from typing import Dict, List, Tuple

sys.path.append (' /home/hsarkar/code/slideseq-tools/src/"')

from slideseq.metadata import Manifest

from slideseq.metadata import Manifest, split_sample_lanes, validate_run_df
from slideseq.config import get_config

import slideseq.util.constants as constants

from slideseq.util import run_command

import logging
log = logging.getLogger(__name__)

4 Chapter 1. Contents

[4]:

[4]:

slide-seq-pipeline, Release 0.1

import matplotlib.pyplot as plt
%matplotlib inline

Classes

We followed the same structure created for the original slide-seqtools repository. The classes and the containing datas-
tructure are repeatedly used for parsing the excel file containing information about the experiment. The main goal of
the associated dataframe is to iterate over all the directories within different libraries to create inermediate files within
the output directory.

def

def

def

get_flowcell (run_info: et.ElementTree) -> str:

e

Get the flowcell name from RunInfo.xml. This should be more reliable than
trying to parse the run directory, which might have been renamed.

:param run_info: ElementTree representing RunInfo.xml
:return: The flowcell name for this run

flowcell = run_info.find("./Run/Flowcell").text
return flowcell

get_read_structure(run_info: et.ElementTree) -> str:
Get read structure from RunInfo.xml. Assumes one index sequence only,
will warn if two are present and ignore the second.

:param run_info: ElementTree representing RunInfo.xml

:return: Formatting string representing the read structure

read_elems = run_info.findall("./Run/Reads/Read[@NumCycles] [@Number]")
read_elems.sort(key=lambda el: int(el.get("Number")))

if len(read_elems) == 4:

two index reads. We will just ignore the second index

log.warning(

"This sequencing run has two index reads, we are ignoring the second one"

)

return "{}T{}B{}S{IT".format(*(el.get("NumCycles") for el in read_elems))
elif len(read_elems) != 3:

raise ValueError(f"Expected three reads, got {len(read_elems)}")

return "{}T{}B{}T".format(*(el.get("NumCycles") for el in read_elems))

get_lanes(run_info: et.ElementTree) -> range:

Return the lanes for this run, as a range

:param run_info: ElementTree representing RunInfo.xml

:return: range object for the lanes of the run

lane_count = int(run_info.find("./Run/FlowcellLayout[@LaneCount]").get("LaneCount"))

return range(l, lane_count + 1)
(continues on next page)

1.2

Pipeline through notebooks 5

[5]:

[6]:
[6]:

[77:

slide-seq-pipeline, Release 0.1

(continued from previous page)

@dataclass
class RunInfo:
"""A dataclass to represent RunInfo.xml for a sequencing run (a.k.a. flowcell)"""

run_dir: Path
flowcell: str
lanes: range
read_structure: str

@property
def demux_log(self):
return f"demultiplex.{self.flowcell}.LOOSTASK_ID.log"

@property
def basecall_dir(self):
return self.run_dir / "Data" / "Intensities" / "BaseCalls"

def alignment_log(self, lane: int):
return f"alignment. {self.flowcell}.L{lane:03d}.$TASK_ID.log"

def get_run_info(run_dir: Path) -> RunInfo:
open the RunInfo.xml file and parse it with element tree
with (run_dir / "RunInfo.xml").open() as f:
run_info = et.parse(f)

return RunInfo(
run_dir,
get_flowcell (run_info),
get_lanes(run_info),
get_read_structure(run_info),

run_info = get_run_info(
Path('/home/hsarkar/code/slide-seq-data/P25255/220329_A00689_0513_BHYK23DRXY"')

Run infomation shows that there is one flow-cell and the files are present in the run_dir. A library contains two lanes.

run_info

RunInfo(run_dir=PosixPath('/home/hsarkar/code/slide-seq-data/P25255/220329_A00689_0513_
-.BHYK23DRXY'), flowcell="HYK23DRXY', lanes=range(l, 3), read_structure='42T8B41T')

We now construct the required sheet for running further steps in slide-seq pipeline

ws = load_workbook('/home/hsarkar/notebooks/slide_seq_analysis/2023/example_metadata.xlsx
—").active

from itertools import islice

data = ws.values

cols = next(data)
(continues on next page)

6 Chapter 1. Contents

slide-seg-pipeline, Release 0.1

(continued from previous page)

data = list(data)

#idx = [r[0®] for r in data]

#data = (islice(r, 1, None) for r in data)

df = pd.DataFrame(data, columns=cols)

run_df = df[constants.METADATA_COLS]

run_df.columns = [c.lower() for c in constants.METADATA_COLS]
import numpy as np

run_df = run_df.fillna(value=0)

run_df = run_df.astype(constants.METADATA_TYPES)

run_df

[8]:

[8]:

NO uUVvibh WN R

library
P25255_1001
P25255_1002
P25255_1003
P25255_1004
P25255_1001
P25255_1002
P25255_1003
P25255_1004

date
2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03

flowcell
Kharchenko
Kharchenko
Kharchenko
Kharchenko
Kharchenko
Kharchenko
Kharchenko
Kharchenko

run_name \

T S T T T G T O T | G Ty

bclpath 1lane sample_barcode \

0 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 TAAGGCGA
1 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 CGTACTAG
2 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 AGGCAGAA
3 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 TCCTGAGC
4 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 TAAGGCGA
5 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 CGTACTAG
6 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 AGGCAGAA
7 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 TCCTGAGC
bead_structure reference \
0 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
1 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
2 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
3 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
4 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
5 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
6 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
7 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
run_barcodematching 1locus_function_list start_sequence base_quality \
0 False 0 0 0
1 False 0 0 0
2 False 0 0 0
3 False 0 0 0
4 False 0 0 0
5 False 0 0 0
6 False 0 0 0
7 False 0 0 0

(continues on next page)

1.2. Pipeline through notebooks 7

[9]:

slide-seq-pipeline, Release 0.1

min_transcripts_per_cell

0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7

gen_readl_plot
0 False
1 False
2 False
3 False
4 False
5 False
6 False
7 False

hiraksarkar

[= I — I — A — R — R — R —]

hiraksarkar

hiraksarkar.
hiraksarkar.

hiraksarkar.
hiraksarkar.
hiraksarkar.
hiraksarkar.

email

cs@gmail.
cs@gmail.
.cs@gmail.
cs@gmail.
cs@gmail.
cs@gmail.
cs@gmail.
.cs@gmail.

com
com
com
com
com
com
com
com

puckcaller_path bead_type

gen_downsampling
False
False
False
False
False
False
False
False

/home/hsarkar/code/slide-seq-data/P25255/Barco. ..
/home/hsarkar/code/slide-seq-data/P25255/Barco. ..
/home/hsarkar/code/slide-seq-data/P25255/Barco...
/home/hsarkar/code/slide-seq-data/P25255/Barco...
/home/hsarkar/code/slide-seq-data/P25255/Barco...
/home/hsarkar/code/slide-seq-data/P25255/Barco...
/home/hsarkar/code/slide-seq-data/P25255/Barco. ..
/home/hsarkar/code/slide-seq-data/P25255/Barco. ..

(=2 — I — I — I — I — I —)

(continued from previous page)

\

The above data-frame are manually curated. One needs to check with the actual file-structure before creating such a
worksheet. Traditionally, the researchers at Broad work with google sheets and fetch data with the sheet id.

Now we would describe the generation process step by step.

Step 1 (Preparing for demultiplexing)

Create folders and files for carrying out demultilexing

from slideseq.metadata import Manifest
from typing import Dict, List, Tuple

import logging

log = logging.getLogger(__name__)

import csv

def gen_barcode_file(manifest: Manifest, flowcell: str, lane: int, output_file: Path):

with output_file.open("w") as out:
wtr = csv.writer(out, delimiter="\t")

wtr.writerow((''barcode_sequence_1",

for library in manifest.libraries:
if (flowcell, lane) in library.samples:

"library_name", "barcode_name"))

(continues on next page)

Chapter 1. Contents

slide-seg-pipeline, Release 0.1

(continued from previous page)
for barcode in library.samples[flowcell, lane]:
we don't write out barcode_name but the column is required
wtr.writerow((barcode, library.name, "))

def gen_library_params(manifest: Manifest, flowcell: str, lane: int, output_file: Path):
with output_file.open("w") as out:
wtr = csv.writer(out, delimiter="\t")
wtr.writerow(("OUTPUT", "SAMPLE_ALIAS", "LIBRARY_NAME", "BARCODE_1"))

for sample in manifest.samples:
if sample.flowcell == flowcell and sample.lane == lane:
output the uBAM directly to library directory
sample.lane_dir.mkdir(exist_ok=True, parents=True)

for barcode, output_ubam in zip(sample.barcodes, sample.barcode_ubams):
wtr.writerow((output_ubam, sample.name, sample.name, barcode))

def prepare_demux(run_info_list: List[RunInfo], manifest: Manifest):
"""create a bunch of directories, and write some input files for picard"""
Create directories
log.info(
f"Creating directories in {manifest.workflow_dir} and {manifest.library_dir}"

)

for run_info in run_info_list:
for lane in run_info.lanes:
output_lane_dir = manifest.workflow_dir / run_info.flowcell / f"L{lane:03d}"

output_lane_dir.mkdir(exist_ok=True, parents=True)
(output_lane_dir / "barcodes") .mkdir(exist_ok=True)

Generate barcode_params.txt that is needed by ExtractIlluminaBarcodes
gen_barcode_file(

manifest,

run_info. flowcell,

lane,

output_lane_dir / "barcode_params.txt",

Generate library_params that is needed by IlluminaBasecallsToSam
gen_library_params(

manifest,

run_info. flowcell,

lane,

output_lane_dir / "library_params.txt",

def validate_demux(manifest: Manifest):
"""verify that ‘prepare_demux® was run previously

e

(continues on next page)

1.2. Pipeline through notebooks 9

[10]:

slide-seq-pipeline, Release 0.1

(continued from previous page)

if not manifest.workflow_dir.exists():
log.error(f" {manifest.workflow_dir} does not exist")
return False

for flowcell_dir in manifest.flowcell_dirs:
run_info = get_run_info(flowcell_dir)

Create directories
log.info(f"Checking directories in {manifest.workflow_dir / run_info.flowcell}")
for lane in run_info.lanes:

output_lane_dir = manifest.workflow_dir / run_info.flowcell / f"L{lane:03d}"

for p in (
output_lane_dir,
output_lane_dir / "barcodes",
output_lane_dir / "barcode_params.txt",
output_lane_dir / "library_params.txt",

if not p.exists():
log.error(f"{p} does not exist, demux looks incomplete')
return False

return True

def validate_alignment(manifest: Manifest, n_libraries: int):
"""verify that alignment was run and output is present"""
for i in range(n_libraries):
library = manifest.get_library(i)

for p_list in (
library.polya_filtering_summaries,
library.star_logs,
library.alignment_pickles,
library.processed_bams,

for p in p_list:
if not p.exists():
log.error(f"{p} does not exist, alignment looks incomplete')
return False
else:
return True

run_name = '1°'

output_dir = Path('/home/hsarkar/code/slide-seq-data/P25255/processed_data')/\
Path(run_name)

flowcell_dirs = sorted(Path(fd) for fd in set(run_df.bclpath))

manifest_file = output_dir / "manifest.yaml"

metadata_file = output_dir / "metadata.csv"

(continues on next page)

10 Chapter 1. Contents

[11]:
[11]:

[12]:
[12]:

slide-seg-pipeline, Release 0.1

(continued from previous page)

run_info_list = [run_info]
config = get_config()

manifest = Manifest(
run_name=run_name,
flowcell_dirs=flowcell_dirs,
workflow_dir=output_dir,
library_dir=Path('/home/hsarkar/code/slide-seq-data/P25255/processed_data/
—libraries'),
metadata_file-metadata_file,
metadata=split_sample_lanes(run_df, run_info_list),
email_addresses=sorted(
set(e.strip() for v in run_df.email for e in v.split(","))
)
)

At this point we have read the config file stored within the slideseq-tools directory, curtailed to our need

config

Config(picard=PosixPath('/home/hsarkar/code/slideseq-tools/soft/picard/build/libs/picard.
—jar'), dropseq_dir=PosixPath('/home/hsarkar/code/slideseq-tools/soft/Drop-seq_tools-2.
—5.1"), reference_dir=PosixPath('/broad/macosko/reference'), workflow_dir=PosixPath('/
—broad/macosko/data/workflows/flowcell'), library_dir=PosixPath('/broad/macosko/data/
—libraries'), gsecret_name='projects/velina-208320/secrets/sequencing-credentials/
—versions/latest', gsheet_id='1kwnKrkbl80OLyE91NDOUZZIXipL4yfBbGjkTebhcwlic', worksheet=
- "Experiment Log', gs_path=PosixPath('macosko_data/libraries'))

manifest

Manifest(run_name='1', flowcell_dirs=[PosixPath('/home/hsarkar/code/slide-seq-data/
—P25255/220329_A00689_0513_BHYK23DRXY')], workflow_dir=PosixPath('/home/hsarkar/code/
—»slide-seq-data/P25255/processed_data/1'), library_dir=PosixPath('/home/hsarkar/code/
—.slide-seq-data/P25255/processed_data/libraries'), metadata_file=PosixPath('/home/
—hsarkar/code/slide-seq-data/P25255/processed_data/1l/metadata.csv'), metadata= o
—library date flowcell run_name \

P25255_1001
P25255_1002
P25255_1003
P25255_1004
P25255_1001
P25255_1002
P25255_1003

2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03
2022-28-03

HYK23DRXY
HYK23DRXY
HYK23DRXY
HYK23DRXY
HYK23DRXY
HYK23DRXY
HYK23DRXY

NO Vb WN R
R R PR RPRRRP B

P25255_1004 2022-28-03 HYK23DRXY

bclpath 1lane sample_barcode \

® /home/hsarkar/code/slide-seq-data/P25255/22032... 1 TAAGGCGA
1 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 CGTACTAG
2 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 AGGCAGAA
3 /home/hsarkar/code/slide-seq-data/P25255/22032... 1 TCCTGAGC
4 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 TAAGGCGA
5 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 CGTACTAG
6 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 AGGCAGAA

(continues on next page)

1.2. Pipeline through notebooks 11

slide-seq-pipeline, Release 0.1

(continued from previous page)

7 /home/hsarkar/code/slide-seq-data/P25255/22032... 2 TCCTGAGC
bead_structure reference \
® 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
1 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
2 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
3 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
4 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
5 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
6 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...
7 8C18X6C1X8M1X /home/hsarkar/code/slide-seq-data/slide-seq-re...

run_barcodematching locus_function_list start_sequence base_quality \

0 False 0 0 0
1 False 0 0 0
2 False 0 0 0
3 False 0 0 0
4 False 0 0 0
5 False 0 0 0
6 False 0 0 0
7 False 0 0 0
min_transcripts_per_cell email \
0 ® hiraksarkar.cs@gmail.com
1 ® hiraksarkar.cs@gmail.com
2 ® hiraksarkar.cs@gmail.com
3 ® hiraksarkar.cs@gmail.com
4 ® hiraksarkar.cs@gmail.com
5 ® hiraksarkar.cs@gmail.com
6 ® hiraksarkar.cs@gmail.com
7 ® hiraksarkar.cs@gmail.com
puckcaller_path bead_type \
® /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
1 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
2 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
3 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
4 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
5 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
6 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
7 /home/hsarkar/code/slide-seq-data/P25255/Barco... 0
gen_readl_plot gen_downsampling
0 False False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False , email_addresses=['hiraksarkar.cs@gmail.com'])

Create folders using the manifest files

12 Chapter 1. Contents

[1:

[13]:

slide-seg-pipeline, Release 0.1

prepare_demux (run_info_list, manifest)

Step 2 Demultiplex (Has to be run in command line)

demultiplex.sh should contain the locations that can be determined from the worksheet and the manifest file

TMP_DIR="/home/hsarkar/code/slide-seq-data/P25255/processed_data/tmp"
PICARD_JAR="/home/hsarkar/code/slideseq-tools/soft/picard/build/libs/picard. jar"
SGE_TASK_ID="2"
BASECALLS_DIR="/home/hsarkar/code/slide-seq-data/P25255/220329_A00689_0513_BHYK23DRXY/
—Data/Intensities/BaseCalls"”

READ_STRUCTURE="42T8B41T"
OUTPUT_DIR="/home/hsarkar/code/slide-seq-data/P25255/processed_data/1"
FLOWCELL="HYK23DRXY"

Run the following script

./scripts/demultiplex.sh

‘We can see the created files here

n_libraries = len(list(manifest.libraries))
for library_index in range(n_libraries):
for run_info in run_info_list:
for lane in run_info.lanes:

print('[{},{},{}]"'.format(
library_index,run_info.flowcell, lane))

sample = manifest.get_sample(
library_index, run_info.flowcell, lane)

for barcode_ubam in sample.barcode_ubams:
print (barcode_ubam)

[®,HYK23DRXY, 1]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1001/
- HYK23DRXY/L0O01/P25255_1001.TAAGGCGA . unmapped.bam

[®,HYK23DRXY, 2]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1001/
—HYK23DRXY/L0®02/P25255_1001.TAAGGCGA . unmapped.bam

[1,HYK23DRXY, 1]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1002/
— HYK23DRXY/L0O01/P25255_1002.CGTACTAG. unmapped.bam

[1,HYK23DRXY, 2]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1002/
—HYK23DRXY/L002/P25255_1002.CGTACTAG. unmapped.bam

[2,HYK23DRXY, 1]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1003/
—HYK23DRXY/L0O01/P25255_1003 . AGGCAGAA . unmapped.bam

[2,HYK23DRXY, 2]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1003/
—HYK23DRXY/L002/P25255_1003 . AGGCAGAA . unmapped.bam

(continues on next page)

1.2. Pipeline through notebooks 13

[1:

slide-seq-pipeline, Release 0.1

(continued from previous page)

[3,HYK23DRXY, 1]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1004/
—HYK23DRXY/L0O1/P25255_1004.TCCTGAGC . unmapped.bam

[3,HYK23DRXY, 2]
/home/hsarkar/code/slide-seq-data/P25255/processed_data/libraries/2022-28-03_P25255_1004/
- HYK23DRXY/L0®2/P25255_1004 . TCCTGAGC . unmapped.bam

After demultiplexing it multiple unmapped bamfiles will be created for each barcode within lane. If there is one
sample_barcode for each lane then it will only create one file.

Step 3 Merge the barcode.unmapped ubams and

n_libraries = len(list(manifest.libraries))
for library_index in range(n_libraries):
for run_info in run_info_list:
for lane in run_info.lanes:

print('[{},{},{}]"'.format(
library_index,run_info.flowcell, lane))

sample = manifest.get_sample(
library_index, run_info.flowcell, lane)

for barcode_ubam in sample.barcode_ubams:
print (barcode_ubam)
bead_structure = sample.get_bead_structure()

xc_range = ":".join(f"{i}-{j}" for c, i, j in bead_structure if c == "C")

xm_range = ":".join(f"{i}-{j}" for c, i, j in bead_structure if c == "M")

if not sample.raw_ubam.exists():
if len(sample.barcode_ubams) > 1:
cmd = config.picard_cmd('MergeSamFiles", manifest.tmp_dir)
cmd. extend(

[
"--QUTPUT",
sample.raw_ubam,
" __SORT_ORDER",
"unsorted",
"--ASSUME_SORTED",
"true",

]

)

for ubam_file in sample.barcode_ubams:
cmd. extend(["--INPUT", ubam_file])
run_command(cmd, "MergeBamFiles", sample)
else:
if sample.raw_ubam.exists():
print(sample.raw_ubam)
else:
os.rename (sample.barcode_ubams[0], sample.raw_ubam)

14 Chapter 1. Contents

[17]:

slide-seg-pipeline, Release 0.1

Step 4 recover whitelisted barcodes (Takes long run from command prompt)

1.2.3 Step 4a: Extract the barcodes (42bp) from the bam files

fp = open('../../../scripts/write_shell.txt','w')
for library_index in range(n_libraries):
for run_info in run_info_list:
for lane in run_info.lanes:
print('[{},{},{}]".format(
library_index,run_info.flowcell, lane))
sample = manifest.get_sample(
library_index, run_info.flowcell, lane)
if sample is None:
print('sample not present')

awk_command = "awk 'NR%2 {{print > \"{}\"}}'".format(str(sample.raw_barcode))
cnd = [
"samtools",
"view",
str(sample.raw_ubam),
"
"cut -f10 |",
awk_command
1
fp.write("{\n".format("' '.join(cmd)))
fp.close()

[0,HYK23DRXY, 1]
[0,HYK23DRXY, 2]
[1,HYK23DRXY, 1]
[1,HYK23DRXY, 2]
[2,HYK23DRXY, 1]
[2,HYK23DRXY, 2]
[3,HYK23DRXY, 1]
[3,HYK23DRXY, 2]

Run the commands

parallel -j 8 < /home/hsarkar/code/slideseq-tools/write_shell.txt

1.2.4 Step 4b: Create whitelist (Ideally one should borrow information from image
analysis)

All the follwoing commands should be run from command line and not notebook

The barcodes will be written using the following script

python scripts/createwhitelist.py

1.2. Pipeline through notebooks 15

[18]:

slide-seq-pipeline, Release 0.1

Step 5: Create the refined bam files

python scripts/recoverbam.py

Step 6: Run the alignment step

python scripts/alignment.py

Step 7: Run processing pipeline

python scripts/processing.py

Ipwd

/home/hsarkar/code/slide-seq-pipeline/docs/source/notebooks

1.3 Recovery algorithm details

1.3.1 Bead Matrix

Within slideseq dataset the left end of the read contains 42 base-pairs. Each of this 42 bp sequence is structured in a
pre-defined arrangement known as bead-matrix. The arrangement dictates which base-pairs to consider while forming
the bead barcode and the UMI.

In our experiment the bead-matrix is ‘8C18X6C1X8M1X’

'C' - bead barcode
'X' - discard
'M' - UMI barcode

According to the previous structure we have the following scenario, where the bead-barcode consists of 8+6 = 14 base-
pairs. There is 18 base-pair spacer between the two different barcodes. This spacer should be fixed and placed in the
predefined location (in this case 9th position) but due to noise and quality of the beads the spacer can have noisy bases
and is shifting from it’s original position.

For example in the beads we see

16 Chapter 1. Contents

slide-seg-pipeline, Release 0.1

10 7

[

(=]
]
I

—
o
[
1

Frequency

P

TCTTCAGCGTTCCOGAGA

107 -

0 1000 2000 3000 4000 5000 6000 7000
Spacersequence

ATGCGAATTCTTCAGCGTTCCCGAGACGATCAGCCATTGCTT

AGCGCCTCTTCAGCGTTCCCGAGACGGTTACTTCCACTAGAT -- If there are more than one shift we can.
—not much (not recoverable)

ATTCGGTTCTTCAGCGTTCCCGAGATACCGCTGTGGGTTTTT -- There is possibility of recovery
GACCTAATCTTCAGCGTTCAGTCATAATCCCACAGATGGTAC -- no
GGGGTCCTTCTTCAGCGTTCCCGAGACTTAGTTCAGCGTCTT --
CGCAGACTTCTTCAGCGTTCTTTTTAAAATATCTGTAGAGGC

TCCGTCCCTCTTCAAAGCAGGCCCGAGCCGCCTGGATACCGC

AGTCAATTTCTTCAGCGTTCCGAGAGCTAAACGGCTGCTTTT

CTTCCAATTTTTCAGCGTTCCCGGACCAAGCAAGTTAGTCTT

70K barcode of 14bp long — Exact match to create a 60K whitelist

Johan has prepared a very comprehensive comparison of the base qualities.

1.3. Recovery algorithm details 17

slide-seq-pipeline, Release 0.1

Error Rate (Per base) Average loss of reads per cycle: 3.9% Average loss of reads per cycle: 2%
" Average efficiency per base: 96.1% Average efficiency per base: 98.0%
©
J 8 100%
8 °
g 80%
7 2 ?
= .
. 6 9‘2 60% 98%A32
X = 53% cumulative integrity
5] G
o c oz,ll ? at end of barcode area
E 4 8 40% saw -
= & \ 0 n
S 3 > \s’o 96.1%"32
L‘:_I 2 20% = 29% cumulative integrity
2 3
£
1 =]

| | " XXX XX XXX TCTTCAGCGTTCCCGAGAXX XX XX
1 _Ol!”_ Chen Lab I Chen Lab Beads (In-House Synthesis) l

Error Rate calculated by checking the integrity of each position in the Universal Primer Region, when the
earlier sequence was in frame.

Our beads have almost twice as high error rate as the Chen Lab beads, but also show a more inconsistent error
rate. For example, 18% of molecules correct at the CCC region, lose alignment at the following G for our beads.

If the errors were 1bp-deletions or substitutions, this could all be salvaged, but unfortunately most of them are
much larger deletions, especially near the end.

Johan Bostrém — Adameyko Lab — May 2022

One thing to notice is that the quality drops a lot therefore we need to correct these errors by algorithmic means.

1.3.2 Current Algorithm

Index Building

5
Whitelist Cl ' —
itelist Clustering Keep these 4
beadbarcodes
10
ATGCGAATCGATCA 7
GGGGTCCTCTTAGT N g3
GTTAGTTCGTTTCC £
GACATCAAGTCATA # 10]
TCACAATTITTTGCA = — il 3.
GACTTCCGICACTC | 95159 s
AGTTACTCCTGAGC L) 127508
GTGCCGTTITTGCC . B
TAATTTTTITTAGG 1
TTCTTCGTLCACGG
>
1w " o 1]
ﬂ'ﬂ [10 15 20 25 liU 00 85 10 15 20 25 30
J Whitelist sequence % 1e6 s Whitelist sequence 1e6
Whitelist 5 \
: Number of unique ~ ~70K
- Frequency threshold q
The whitelist unfortunately Barcodes
can be 3M where we know
that the number of actual beads ettt '
are in the order of ~70K 1 ATGCGAATCGATCA
| GGGGTCCTCTTAGT Hash table 1 Hashtable2 '
\ GTTAGTTCGTTTCC !
X GACATCAAGTCATA Part 1 Spacer Part 2 !
TCACAATTITTTGCA |
! GACTTCCGICACTC |
! AGTTACTCCTGAGC |
| GTGCCGTTITTGCC
H |
We keep the most frequent | TanrTrTTTAGE| Figure 1c e \
bead barcodes. | TTCTTCGTLCACGG \
: I
[AGTTGA :
[i 1
! 70K list |
I
|

18 Chapter 1. Contents

slide-seg-pipeline, Release 0.1

The whitelist contains around 70K barcodes. The data from Johan contains around 118M reads. The index is organized
with two hash tables. First one containing the first 8bp part of the barcodes and the second hash table that contains the
6bp. We build a connection between them via their co-occurrence in the white list.

Building the whitelist consists of two parts. In the first part we filter out the reads that has a perfect match with the
spacer in the expected position (start position 8). We know that the bead barcode consists of the first 8bp and then the
6bp after the spacer. The initial whitelist is built by clipping this 14bp from the reads filtered in the previous step. The
expected number of bead barcodes in a puck is ~70K. However In most of the cases because of noise, we end up with
more bead barcodes. In order to extract the expected number of bead barcodes, we built a frequency table for these
barcodes as shown in Figure 1b, the y-axis shows the frequency of the bead barcodes. The horizontal line shows the
frequency cutoff we can use and the resulting number of unique bead barcodes when using such a threshold.

The final whitelist consists of around ~70K bead barcodes.

Out of all reads in our data 38% matches exactly with one of the barcodes in the whitelist (out of these around 3% has
a wrong spacer sequence). The aim of the alignment algorithm is to recover the rest 62% reads.

The alignment algorithm uses different heuristics and can be parameterized to tune the number final reads that can be
recovered. Alignment algorithm made use of the structure shown in Figure 1c.

The recovery algorithm starts with the alignment of the spacer to the actual read. A typical spacer alignment is shown
in Figure 2.

TCTTCAGCGTTCCCGAGA Spacer

GACCTAATCWCAGCGTTT ——AGTCATAATCCCACAGATGGTAC Reference sequence

Start Position End Position
Figure 2

Using this method we recover around 7% of the noisy reads. This leads us to 45% 56% of the beads to recover.

Tuning the allowable rate

There are a couple of different ways to make this algorithm flexible to allow more number of beads at the expense of
accepting reads that are less sensitive to the substitution noise.

1. We can increase the size of the whitelist to add more bead barcodes in the index..
—Increasing the index size accommodate wide range of mapping.

2. Increasing the edit distance threshold.

3. Increasing the length of the reference used to search for the second part.

Instead of stopping at the expected position of the UMI the search can further progress to the end of sequence.

The above mentioned algorithm is implements in scripts/recoverbam.py

1.3. Recovery algorithm details 19

	Contents
	Pipeline
	Pre-requisite softwares

	Pipeline through notebooks
	Preprocess output directory
	Import the needed packages
	Classes
	Step 1 (Preparing for demultiplexing)
	Step 2 Demultiplex (Has to be run in command line)
	Step 3 Merge the barcode.unmapped ubams and
	Step 4 recover whitelisted barcodes (Takes long run from command prompt)

	Step 4a: Extract the barcodes (42bp) from the bam files
	Step 4b: Create whitelist (Ideally one should borrow information from image analysis)
	Step 5: Create the refined bam files
	Step 6: Run the alignment step
	Step 7: Run processing pipeline

	Recovery algorithm details
	Bead Matrix
	Current Algorithm
	Index Building
	Tuning the allowable rate

